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Rotational channel flow over small 
three-dimensional bottom irregularities 
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Rotational flow of an inviscid fluid over an irregularity in the bottom is investi- 
gated. The flow is regarded as a perturbed unidirectional flow, and the shape of 
the irregularity is described using Fourier transforms. The velocity profile in the 
unidirectional flow is determined using the eddy-viscosity concept and a finite 
wall slip velocity. 

Two different examples of irregularities are cansidered: (a) an infinitely long 
straight irregularity which forms an arbitrary angle with the direction of the 
basic flow and ( b )  a hump in a channel with impermeable walls. The influence of 
rotation on the two- and three-dimensional waves which are formed downstream 
of these irregularities is analysed and experimentally verified. Further, it is 
shown that the gradient of the basic velocity profile increases the transverse 
movement of the fluid particles a t  the bottom, while a t  the surface this transverse 
movement is decreased. 

1. Introduction 
The problem of two-dimensional disturbances to an initially unidirectional 

flow where the velocity is constant over the depth has been solved many years 
ago. The first to deal with this problem was Kelvin (1886), and a complete de- 
scription can be found in Lamb (1932, pp. 409-410). Also, the more general prob- 
lem where the disturbance is three-dimensional has been treated by several 
authors, without a complete description having been obtained (Lamb 1932, 

I n  the present paper we are concerned with channel flow over small simple 
three-dimensional disturbances for which analytical solutions are available. The 
character of a channel flow is taken into account by assuming that the undis- 
turbed basic velocity is dependent on the vertical co-ordinate. The perturbation 
of the flow is described by the inviscid form of the Navier-Stokes equation. As 
shown by Engelund & Fredsere (1971)) a rotational inviscid theory describing 
the two-dimensional flow over a wavy bed is in very good agreement with experi- 
ments except for a small region close to the bottom. As long as the extent of the 
irregularities is small, this may also be assumed to apply to the three-dimensional 
case. I n  the case of larger three-dimensional features, for instance meandering, 
the perturbation of the flow must be analysed using the viscous form of the 

pp. 433-437). 
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FIGURE 1. The velocity distribution in unidirectional flow. 

Navier-Stokes equation in order to describe the secondary currents reasonably. 
This can be done in a way similar to that demonstrated recently in a paper by 
Engelund & Skovgaard (1 973). 

Many experiments have been carried out in connexion with the three-dimen- 
sional flow pattern in a channel covered with different forms of irregularities 
(Allen 1968). This paper must be regarded as an attempt to arrive at  a theoretical 
understanding of this flow pattern. 

2. Velocity distribution in unidirectional channel flow 
In the present paper, the eddy-viscosity concept has been used according to 

the ideas suggested by Engelund (1 964, 1970). The eddy viscosity B is assumed to 
be constant over the depth, which is a good approximation outside the constant- 
stress layer a t  the bottom, and the value of 8 is found to be 

B = +zUfo D,  (2.1) 

where Ufo is the friction velocity and D the depth of the flow. From the flow 
equations, the velocity distribution U in the unidirectional flow is then found 
to be given by 

where x3 is the distance from the surface and UbO is the so-called ‘slip velocity’ 
at the bottom, which must be used because 6 is assumed to be constant also in the 
constant-stress layer; see figure 1. The value of ubo is found by matching the outer 
velocity profile with the known logarithmic velocity profile near the bottom. 
In the case of a hydraulically rough bed, the matching condition turns out to be 

Ubo/Uf0 = 8.3 + 2.45111 (s/kUfo),  

where k is the equivalent sand roughness. The corresponding expression in the 
case of a smooth bed is 

UbO/UfO = 5.4 + 2.45 In (8/v),  (2.4) 

where v is the kinematic viscosity of the fluid. 
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I n  order to  obtain simple analytical expressions in the following, the parabola 
(2.2) is replaced by a cosine profile given by the expression 

u = ~oCOS(PX~/D), (2.5) 

P2 = 14uf0/U,0 (2.6) 

where Us, is the maximum velocity a t  the surface. If we put 

(2.5) is almost identical with the velocity profile (2.2). 

3. Inviscid rotational flow over a slightly perturbed bottom 
Let the bottom of the channel be slightly perturbed and let us call the deviation 

from the unperturbed bottom h(xl, x2),  where x1 is the co-ordinate in the direction 
of the mean velocity and x2 is the horizontal co-ordinate perpendicular to xl. 
The flow is perturbed according to the perturbation of the bottom, and this 
steady perturbed flow is described by the inviscid form of the Navier-Stokes 
equation 

using Cartesian tensor notation. Here, p is the fluid pressure, gi the acceleration 
due to gravity, and vi the velocity vector, which in the slightly perturbed flow 
is written as the sum of the basic velocity l& and the perturbation velocity ui: 

vi = ui+ui. (3.2) 

gi can be written as gi = - a(gz)/axi) (3.3) 

where gz is the gravitational potential. The sum of the pressure head and this 
potential can be written as 

PIP + 92 = d z o  + D )  +PIP, (3.4) 

where Pis the pressure due to the perturbation of the flow and zo is the level of the 
bottom for the undisturbed flow. I n  the following, the dimensionless co-ordinates 
ti = xi/D are introduced. Hence, inserting (3.2) and (3.4) in (3.1), we obtain 
after linearizing 

Besides the Navier-Stokes equation, the equation of continuity must be 
satisfied, that is, in the incompressible case, 

auilati = 0. (3.8) 

The perturbation of the surface is called 7, and in the following h and 7 are 
positive upwards, that is, in the - l3 direction. Hence, the linearized kinematic 
conditions a t  the bottom and the surface are given by 

- UbOah/axl on .g3 = 1, (3.9) 
-Usoay/axl on g3 = 0. (3.10) 

u3= { 
4-2 
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FIGURE 2. Definition sketch of the irregularity. 

7 is eliminated from (3.10) by the Bernoulli equation at the free surface 

viv,/2g+y = 0 on & = -7/D, 

which in the linearized system yields 

U,,,u,+yg= 0 on t3 = 0. (3.11) 

The purpose of the following two sections is to apply the general equations 
(3.5)-(3.8) together with the general boundary conditions (3.9)-(3.11) to specific 
examples where the perturbation of the bottom is described using Fourier trans- 
forms. 

4. Flow over an oblique irregularity 
4.1. Description of the $ow using Fourier transforms 

In the present section, we are concerned with the flow over an irregularity which 
makes an arbitrary angle 0 with the direction perpendicular to the basic flow 
as shown in figure 2. The width of the channel is assumed to be infinite. 

By introducing the co-ordinate 

[ = 6, cos0 - E2 sin 0 (4.1) 

the irregularity h(&, E 2 )  is described by h = h(6). As long as 

is bounded, h can be written using the Fourier transform formula as 

r m  
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In  the same way the pressure P and the velocities ui due to the perturbation are 
written as 

The functions $ and fi are dimensionless. 
Inserting the expressions (4.4) into (3.5)-(3.8), we obtain 

(4.4b) 

and o = ~K(COS (S)fl -sin (19) f z )  + af3/at3. (4.8) 

In  order to derive an equation with only one unknown function, we now multi- 
ply (4.6) by tan28 and add this to (4.5). By using (4.8) we obtain 

(4.9) 

Equation (4.9) is now differentiated with respect to c3, and if (4.7) is used the 
resulting differential equation in f is seen to be 

ay3/ag - { uii/ u + Kz}  f = 0. (4.10) 

By using (2.5) we obtain the following solution to this homogeneous linear 
differential equation : 

f3 = C 1 k )  exp { t 3 ( K 2  - P ” q  + CZ(K)  exp { - t 3 V  - P2)”. 
By substituting (4.11) into (4.9) we find the expression for $ to be 

(4.11) 

The functions c’(K) and c ~ ( K )  are found from the boundary conditions. Equation 

f 3 ( K ,  1)  = i K z ( K ) .  (4.13) 
(3.9) corresponds to 

From (3.10) and (3.11) we obtain 

u3 = e a u l / a t l  on C3 = 0, (4.14) 
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where fls = Uso/(gD)j is the Froude number based on the surface velocity. By 
using (3.5) a t  the surface, where U' = 0, we obtain 

(4.15) 

and this equation together with (4.14) gives the second equation determining 

(4.16) 
c1 and c2: 

Inserting the expressions (4.1 1 ) and (4,12) for f and $ into (4.13) and (4.16) 
yields the values of c ~ ( K )  and c ~ ( K ) ,  and after some tiresome calculations the com- 
plete expression for $ turns out to be 

f 3 k  0) = - ~ E ( % ) / q o )  iK cos (6 )  $k, 0) .  

in which 

(4.17) 

+{1 -9Es/3tanP~,)cosh [<3(~2-P2)*] (4.18) 

and g3(K) = cosh(/c2-P2)*-sinh ( K ~ - P ~ ) * / ~ ~ ~ ( K ~ - - ~ ) ~ .  (4.19) 

In  (4.18) and (4.19) the quantity 

Fse = Fs cos 8 (4.20) 

is introduced. From (4.3) and ( 4 . 4 ~ )  it  is seen that the perturbation of the pres- 
sure due to an irregularity of arbitrary form h(5) can be written as 

In order to obtain simple calculations, a simple irregularity expressed by 

h = [O'  
(51 2 50 = T/P, 

hO{COSP5+ 11, It;( G 50 = T / P ,  

has been chosen. On integrating the inner integral in (4.21) we have 

(4.22) 

This integral is evaluated using the same complex integral theory as in Lamb. 
These straightforward calculations are omitted here, and the solutions turn out 
to be as follows. 

Case l.Sse > (tanP/P)+. 

} ( 4 . 2 4 ~ )  



Rotational channel $ow over small irregularities 55 

In these expressions the vz are found from 

=Eo,  1 = 0 , 1 , 2  ,..., tan (v; + P2)* 
(v;+p2)+ 

(4.25) 

Case 2 .  Fso < (tanP/P)t. 

where the value of a is determined by 

+ [ 1 - 9zo P tan /3C3] cosh [t3(a2 - pz)q) 

4.2. Theoretical and experimental results 

.Formation of waves. The shape 7 of the surface is related to the pressure function 

(4.29) 

which is obtained from (3.11) and (4.15). From (4.24) it is seen that a wave is 
formed downstream of the irregularity as long as 

p by 
7(5) = m 7  O)/Y, 

9% tanP/P = F % , c r i t *  
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FIGURE 3. The wavenumber variation with the Froude number Fe. (a)  Experiments in 

x , O  = 45". ( b )  Experiments in flow over a rough bottom: -, /3 = 0; ----, p = 1.2; 
flowover asmoothbottom: ----,p = 0;---- ,p = 0.75; 0 , e  = oo;v,e = w ; ~ , e  = 30"; 

e = 0. 

This is in agreement with the work of Lighthill (1953), who considered long 
waves in running water, in which the main velocity profile was also rotational. 
Lighthill states that the critical Froude number above which no upstream propa- 
gation is possible is determined by the equation 

which agrees with the above statement. 
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FIGURE 4. The movement of a fluid particle (a )  along the bottom and ( b )  on the surface. 
-, /3 = 0; /3 = 1.2. 9 = 0.5, 0 = 30°, ho/D = 0.01. 

FIGURE 5 .  The movement of a fluid particle (a )  along the bottom and ( b )  on the surface. 
-, /3 = 0; ----, /3 = 1 . 2 . 9  = 2.0, 0 = 30°, h,/D = 0.01. 
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It is possible to make a comparison with Lighthill’s theory because the wave- 
number a of the standing wave given by (4.27) tends to zero as Fs0 tends to the 
critical value. 

The relation (4.27) is sketched in figures 3(a) and ( b )  for /3 = 0.75 and 1.2, 
respectively. The abscissa variable Fo = V cos B/(gD)* is the Froude number 
in the t direction based on the mean velocity V .  

The relations sketched in figure 3 are experimentally verified by experiments 
on flow over a smooth and a rough bottom. In the case of a smooth bottom, the 
depth varied between 0.1 and 0-3m, while the velocity varied between 1.0 and 
0.5m/s. From (2.1), (2.4) and (2.6) this gives a value of P of about 0.75, and it is 
seen that the measurements fit the rotational curve well. In  the case of a rough 
bottom, the roughness was found to be 0.85 cm high, and the theoretical depth 
varied between 2 and 6 cm, which yields a value of ,!? of about 1.2, according to 
(2.1)) (2.3) and (2.6). Again the agreement between theory and experiment is 
satisfying. 

The particle path close to the irregularity. The velocity perturbations ui are 
found from the flow equations (3.5)-(3.7), after the expression for P has been 
obtained. Of particular interest is the transverse velocity u2 at the bottom and 
at the surface, because by using this we are able to describe the path of a fluid 
particle, which is given by the expression 

(4.30) 

where the co-ordinates (t:, tz) describe the path of a fluid particle coming from 
(t1,t2) = ( - 0 0 , f ; ~ ) .  The results of the integration (4.30) are shown for two 
different cases in figures 4 and 5. In  figure 4 the Froude number is lower than the 
critical value while the flow is supercritical in figure 5. 

It is seen that a fluid particle undergoes a transverse displacement T when it 
passes the irregularity, and that the direction of this displacement depends on 
whether Fo is greater than or lower than the critical value. Letting t: -+ co 
in (4.30) we obtain an expression for T. By use of (3.6) and (4.24) this yields 

(4.31) 

in which only Tl depends on p. The expression for TI is found by use of (4.18) 
and (4.19): 

In  the Case = 0 (potential theory), Tl does not vary over the depth, but 
when p p 0, the value of TI isincreased considerably at  the bottom, but decreased 
a t  the surface as shown in figure 6 and also in figures 4 and 5. This can be explained 
as follows: in the transverse movements, the pressure forces must balance the 
centripetal forces. Both in potential and in rotational unidirectional flow, the 
pressure is hydrostatic, and therefore the rotation of the basic velocity has no 
noticeable effect on the pressure perturbation. Hence, the centripetal forces, 
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/3-0 p= 1.0 8=1-2 

FIQURE 6. The variation of the total transverse displacement T ,  
with depth. so = 0.5. 

Experiment D (m) Q (m2/s) F x  cos 6 Eb T b  E, T* 

1 0.195 0.125 0.36 -0.20 -0.16 -0.05 -0.09 
2 0.215 0.180 0.47 -0.20 -0.16 -0.05 -0.07 
3 0.175 0.110 0.40 -0.17 -0.21 -0.09 -0.11 
4 0.11 0.080 1.4 0.14 0.10 - - 

TABLE 1. The transverse displacement at the bottom (index b )  and at the surface (index 8). 
In experiments 1, 2 and 3, h, = 0*017m, EoD = 0.35m, 0 = 37.5, p = 0.75. In experiment 4, 
h, = 0.005 m, 6, D = 0.17 m, 6 = 45O, p = 0-8 

described by U2/r, where l / r  indicates the streamline curvature, must maintain 
their magnitude whatever the distribution of U may be. Hence, the value of r 
must decrease a t  the bottom, and this increase in the streamline curvature 
explains the greater transverse movements a t  the bottom. Similarly, a t  the sur- 
face, where V, is greater than the mean velocity V ,  this involves a decrease in the 
transverse movements. 

In order to verify the relation (4.31), some simple experiments were carried 
out on the paths of particles which were either rolling along the bottom or floating 
on the surface. To eliminate the effect of gravity, the density of the particles 
rolling or jumping just above the bottom was only a little greater than that of 
the water. The diameter of the particles was 1.5 cm. The experimental results for 
the dimensionless displacement E,  a t  the bottom and E, in the surface are 
shown in table 1 and compared with the corresponding theoretical values Tb and 
T, obtained from (4.31). 

I n  each experiment, the displacement of twenty particles was measured, 
and there was relatively large scatter in the results, especially in experiment 4, 
where a smaller flume was available, compared with experiments 1, 2 and 3. 

5. Flow over a hump in a channel 

A definition sketch of a hump given by the expression 

5.1. Description of the $ow using Fourier transforms 

(5.1) 

0, ltll 2 to7  

ho{cosp51 + I} + ho{cosp,51 + I} cos 

= hl(t1) +hz(t1, t z ) ,  1511 G go,  
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FIGURE 7. Definition sketch of the irregularity. 

is shown in figure 7, where the dotted lines indicate the points of equal deviation 
from the undisturbed bottom. The relation between to and p is as in (4.22), and 
the value of q is chosen to be 

corresponding to a single hump in the channel of width B. The flow over an 
irregularity given by h1(tl) in (5.1) has already been found in $4 (here 8 = 0) ,  
and hence, in the following we are concerned with the solution for the flow over 
the irregularity h2(Cl,(,) in (5.1). Because of the simple form of h,, this can be 
written like (4.2) and (4.3) as 

q = 2rD/B, (5.2) 

From the boundary equations and the flow equations in $ 3, it turns out that, 
if we assume that the solutions for P and zc, can be described by expressions of 
the form a([,) b&), the Fourier transform expressions equivalent to (4.4) must 
bake the form 

( 5 . 4 ~ )  

(5 .4b)  

i 
m 

Wl, 52963) = P G O  cos (q52)j- &K, f 3 )  exp 

Ui(tl,f;,, 53) = UbO cos (q t2 ) /  fi(G 53) exp (iKt-1) dK, 

dK ,  
- W  

00 

where Pu,, cos (at2) 4 ( K j  53) = 41- ~ ( 7 ,  t2, t3) exp ( - w dy, 

-a 

where cos (q5J Ubo f&, 53) = - 



Rotational channel flow over small irregularities 61 

in which the subscript i takes the value 1 or 3, and 

(5.4c) 
u z ( 5 1 ,  527'53) = UbO sin (qC2)J- f 2  ( 4  t 3 )  exp (iK.51) d K ,  

sin ( q 5 2 )  U b O f 2 k  53)  = $J-- U,(Y, '529 '53) exp ( - i K Y )  dY, 

- W  

m 

where 

Equation ( 5 . 4 ~ )  satisfies the kinematical condition u2 = 0 at  the side walls, 
where g2 = 5 B/2D. Inserting (5.4) in (3.5)-(3.8) yields 

0 = k f l +  q f z  + af3lat3.  (5.8) 

The manipulations analogous to those which lead to (4.11) and (4.12) are 
as follows: (5.7) is multiplied by q 2 / K 2  and added to (5.5). By using (5.8) we obtain 

(5.9) 

Equation (5.9) is differentiated with respect to 5, and using (5.7) we obtain 

(5.10) 

f 3 ( K ,  5 3 )  = C i ( K )  exp{'53(K2+42-P2)*}+C2(K)exp{-531,(~2+42-82)~}. (5-11) 

The expression for Q, is found from (5.9) and the two functions c1 and c2 are, 
as in $4, found from the boundary conditions (3.9), (3.10) and (3.11). The expres- 
sion for 4 turns out to be 

in which 

(5.12) 

K 2  + (1 - 9; ~ ~ f p 2 P  tan PC3) cosh { [ , ( K ~  + q2 - P2)*} (5.13) 

and 
~2+q2sinh ( K ~ + @ - - P ~ ) *  

g3(lc) = c o s h ( ~ ~ + q 2 - / 3 ~ ) & - -  (5.14) 
K 2 T E  ( K 2 + q 2 - - P 2 ) *  

Inserting the expression for Z ( K ) ,  obtained from (5.1) and (5.3),  in (5.12) we 
obtain the same expression as (4.23) except for a factor cOsqt2. Now, g l ( K ,  c3) and 
g 3 ( K )  are defined by (5.13) and (5.14) and the pressure perturbation P 2 ( &  t2, t3) 
due to the perturbation h 2 ( t 1 ,  t2) turns out to be 
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FIGURE 8. The surface elevation q/h, close to the irregularity. 
( a )  P = 0.5, BID = 8, 6, = 2. ( b )  9 = 3.0, BID = 4, = 2. 
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FIGURE 9. The variation in the wave amplitude A; with q. 

/l = 0, f;, = 0.5. 

l = O  0.8 1.2 

0 1 

9 

FIGURE 10. The variation in the wave amplitude A; with p. 
q = 1.2, [,, = 0.5. 

5.2. Theoretical and experimental results 
The  shape of the surface. When the solution P, due to the perturbation h, has 
been obtained, the total solution PT is written as 

PT = PI+& (5.19) 

where P, is the perturbation of the pressure due to the perturbation h,, given 
in (5.1). P, is obtained from (4.24) by putting B = 0. The shape of the surface 
is obtained from (4.29) and a picture of the surface close to the irregularity is 
shown in figure 8. The lines in the figure indicate the points of equal deviation 
from the mean water surface level. In  figure S(a), the Froude number is less 
than the critical value, and a local lowering occurs close to the irregularity. 
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FIGURE 11. The variation in the longitudinal wavenumber a* with the Froude number 9. 

Experiments in flow over a smooth bottom. -, p = 0 ;  ----, p = 0.7. p = 1.1. 

In  figure 8 ( b )  the Froude number is greater than the critical value, and now the 
water level is raised close to the irregularity. 

As seen from (4.24), h, causes the formation of B two-dimensional wave with an 

as long as the Froude number is less than the critical value, and from (5.15) it is 
seen that h, causes the formation of a three-dimensional wave with an amplitude 

The latter wave exists at all Froude numbers because (5.16) always has a real 
root. In  figure 9, the variation of A: with the Froude number a t  different values 
of q is sketched. In  the special case where q is equal to zero, we obtain A:. From 
the figure it is seen that large values of q, which imply small values of BID [cf. 
( 5 . 2 ) ] ,  result in a nearly two-dimensional surface a t  Froude numbers less than the 
critical value. 

In  figure 10, the influence of the rotation on the wave amplitudes is shown. 
It is seen that the rotation involves a considerable decrease in the amplitude at 
large Froude numbers. 

Finally, the influence of rotation on the wavenumber a* of the three-dimen- 
sional wave given by (5.16) is illustrated by an example sketched in figure 11. 
As in $4,  the rotation leads to an increase in the wavelength in the flow direction. 
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FIGURE 12. The function @, which indicates the transverse movement of a fluid particle 
with E,. ( a )  E3 = 1 (bottom). ( b )  [a = 0 (surface). q = 1.2, 6, = 0 . 5 , s  = 0.5. 

Some experiments carried out in a flume where the bottom was smooth with 
value of p of about 0.7 are plotted in the figure. Because the depth decreases as 
the Froude number increases, it was not possible to obtain a fixed value of q 
in all the measurements. The data plotted in figure 11 are therefore adjusted to a 
fixed value of q for comparison with the theory. The agreement between rota- 
tional theory and experiments is satisfactory. 

The particle path close to the irregularity. The particle path is found from the 
expression (4.30) and can be written as 

6: = sin ( q t - 2 )  w;, 6 3 )  + 6 2 ;  (5.20) 

cf. the expression for u2 in (5.4). An example of the function CD is depicted in 
figure 12 for different values of p, and as in 3 4, the rotation of the basic profile 
causes a considerable increase in the transverse movement of the fluid particles 
at the bottom. 

This article forms part of the author’s Ph.D. study under the supervision of 
Professor F. A. Engelund, to whom the author is grateful for stimulating discus- 
sions. Further, the author is indebted to the students Jens Ole Frederiksen and 
Jens Chr. Refsgaard for experimental assistance. A detailed description of the 
experiments and the calculations of (4.24) and (5.15) are available in the fuller 
Ph.D. report (Fredsere 1974). 
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